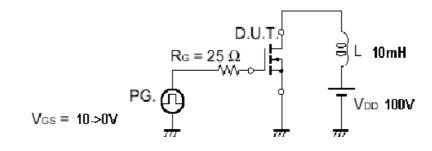


- Advanced Process Technology
- Ultra low On-Resistance Provides Higher Efficiency
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- IDSS and VDS (on) Specified at Elevated Temperature

DESCRIPTION

This high voltage MOSFET used an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition, this advanced MOSFET is designed to withstand high energy in avalanche and commutation time. Designed for high voltage, high speed switching application in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operation areas critical and offer additional and safety margin against unexpected voltage transients.



ABSOLUTE MAXIMUM RATINGS

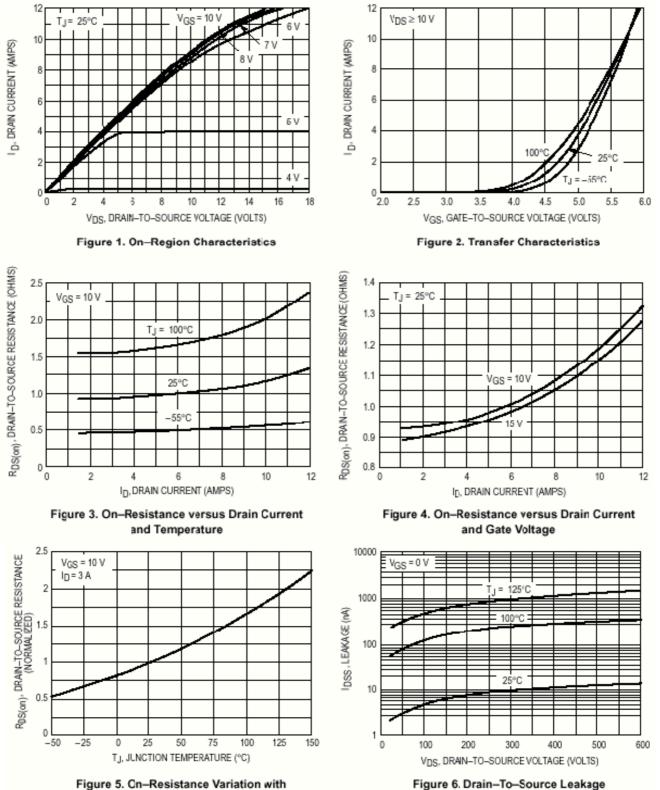
Rating	Symbol	Value	Unit
Drain to Current – Continuous	ID	6.0	Α
Gate-to-Source Voltage – Continue	VGS	+/- 20	V
- Non-repetitive Total Power Dissipation Derate Above 25°C	VGSM PD	+/- 40 125 1.0	v ₩ ₩/℃
Operating and Storage Temperature Range	TJ, TSTG	-55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy – TJ = 25 $^{\circ}$ C (VDD = 100V, VGS= 10V, IL =6A, L = 10mH, RG=25 $^{\circ}$ C)	EAS	180	mJ
Thermal Resistance – Junction to Case - Junction to Ambient	⊃JC ⊖JA	1.0 62.5	°C /W
Maximum Led Temperature for Solding Purpose, 1/8" from case for 10 seconds	TL	260	°C

TEST CIRCUIT

Test Circuit – Avalanche Capability

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, T_J = 25 $^\circ\!\mathrm{C}$.


			BOGNGO			
Characteristic		Symbol	Min	Тур	Max	Units
Drain-Source Breakdown Voltage		V _{(BR)DSS}	600			V
(V _{GS} = 0 V, I _D = 250 µ A)						
Drain-Source Leakage Current		IDSS				μA
(V _{DS} = 600 V, V _{GS} = 0 V)					100	
$(V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 125^{\circ}\text{C})$					50	
Gate-Source Leakage Current-Forward		IGSSF			100	nA
(V _{gsf} = 20 V, V _{DS} = 0 V)						
Gate-Source Leakage Current-Reverse		IGSSR			100	nA
(V _{gsr} = 20 V, V _{DS} = 0 V)						
Gate Threshold Voltage		V _{GS(th)}	2.0		4.0	V
(V _{DS} = V _{GS} , I _D = 250 µ A)						
Static Drain-Source On-Resistance (V	/ _{GS} = 10 V, I _D = 3.5A) *	R _{DS(on)}			1.2	Ω
Forward Transconductance (V _{DS} = 15 V, I _D = 3.0A) *		g _{FS}	3.4			mhos
Input Capacitance	(V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz)	Ciss		1498	2100	pF
Output Capacitance		Coss		158	220	pF
Reverse Transfer Capacitance		Crss		29	60	pF
Turn-On Delay Time	$(V_{DD} = 300 \text{ V}, I_D = 6.0 \text{ A},$ $V_{GS} = 10 \text{ V},$ $R_G = 9.1\Omega) *$	t _{d(on)}		14	30	ns
Rise Time		tr		19	40	ns
Turn-Off Delay Time		t _{d(off)}		40	80	ns
Fall Time		tr		26	55	ns
Total Gate Charge	(V _{DS} = 300 V, I _D = 6.0 A, V _{GS} = 10 V)*	Qg		35.5	50	nC
Gate-Source Charge		Q _{gs}		8.1		nC
Gate-Drain Charge		Q _{gd}		14.1		nC
Internal Drain Inductance		LD		4.5		nH
(Measured from the drain lead 0.25	' from package to center of die)					
Internal Drain Inductance		Ls		7.5		nH
(Measured from the source lead 0.2	5" from package to source bond pad)					
SOURCE-DRAIN DIODE CHARACTE	ERISTICS					
Forward On-Voltage(1)	$(I_{s} = 6.0 \text{ A},$	V _{SD}		0.83	1.2	V
Forward Turn-On Time	$(I_s = 6.0 \text{ A}, d_{1s}/d_t = 100 \text{ A}/\mu \text{s})$	t _{on}		**		ns
Reverse Recovery Time	uis/ut = 100A/µs)	trr		266		ns

* Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%

** Negligible, Dominated by circuit inductance

TYPICAL ELECTRICAL CHARACTERISTICS

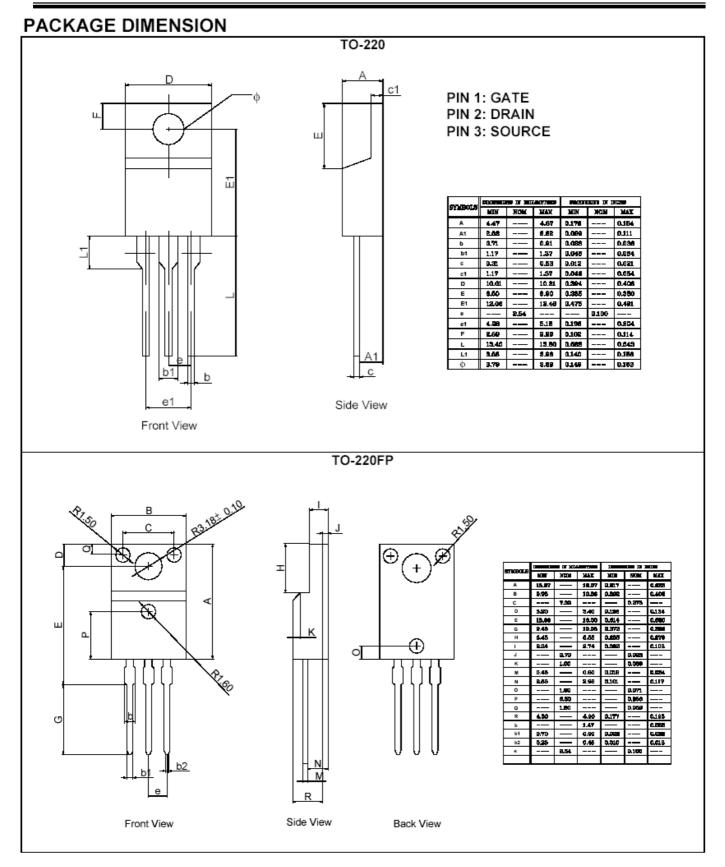

Temperature

Figure 6. Drain–To–Source Leakage Current versus Voltage

How to reach us : Hong Kong Headquarter :Unit C, 11/F, Wing Hang Insurance Building 11 Wing Kut Street, Central, Hong Kong Shenzhen Office :Room 4A008, 4/F, Sun Asia Electronic City, Zhonghang Road ,Shenzhen, China. e-mail: info@funart.com.hk Tel: (852) 25950393 Fax: (852) 25588160 Tel: (86) 755 6130 6688 Fax: (86) 755 6130 6667

B06N60 N-Channel Power MOSFET

How to reach us : Hong Kong Headquarter :Unit C, 11/F, Wing Hang Insurance Building 11 Wing Kut Street, Central, Hong Kong Shenzhen Office :Room 4A008, 4/F, Sun Asia Electronic City, Zhonghang Road ,Shenzhen, China.

e-mail: info@funart.com.hk Tel: (852) 25950393 Fax: (852) 25588160 Tel: (86) 755 6130 6688 Fax: (86) 755 6130 6667

IMPORTANT NOTICE

Blue Electronic reserves the right to mark change to its products or discontinue any product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using product may involve potential risk of death, personal injury, or severe property or environmental damage. Blue Electronic product are not designed, intended, authorized or warranted to be suitable for use in life-support applications devices or systems or other critical applications. Use of Blue Electronic products in such application is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards